HashMap源码解析

HashMap是Java中极其频繁的、非常重要的一个集合类,在JDK8改动也比较大,本文主要基于JDK8下HashMap的实现

源码分析

  • 类视图

    类视图

  • 类注释

    1. 允许NULL值,NULL
    2. 不要轻易改变负载因子,负载因子过高会导致链表过长,查找键值对时间复杂度就会增高,负载因子过低会导致hash桶的 数量过多,空间复杂度会增高
    3. Hash表每次会扩容长度为以前的2倍
    4. HashMap是多线程不安全的,在JDK1.7进行多线程put操作,之后遍历,直接死循环,CPU飙到100%,在JDK 1.8中进行多线程操作会出现节点和value值丢失,为什么JDK1.7JDK1.8多线程操作会出现很大不同,是因为JDK 1.8的作者对resize方法进行了优化不会产生链表闭环。这也是本章的重点之一,具体的细节大家可以去查阅资料。这里就不解释太多了
  • 类常量

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
      /**
    * The default initial capacity - MUST be a power of two.
    */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

    /**
    * The load factor used when none specified in constructor.
    */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    /**
    * The bin count threshold for using a tree rather than list for a
    * bin. Bins are converted to trees when adding an element to a
    * bin with at least this many nodes. The value must be greater
    * than 2 and should be at least 8 to mesh with assumptions in
    * tree removal about conversion back to plain bins upon
    * shrinkage.
    */
    static final int TREEIFY_THRESHOLD = 8;
    /**
    * The smallest table capacity for which bins may be treeified.
    * (Otherwise the table is resized if too many nodes in a bin.)
    * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
    * between resizing and treeification thresholds.
    */
    static final int MIN_TREEIFY_CAPACITY = 64;
    /**
    * The maximum capacity, used if a higher value is implicitly specified
    * by either of the constructors with arguments.
    * MUST be a power of two <= 1<<30.
    */
    static final int MAXIMUM_CAPACITY = 1 << 30;
  • 构造函数

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    public HashMap(int initialCapacity, float loadFactor) {                                                                   
    if (initialCapacity < 0)
    throw new IllegalArgumentException("Illegal initial capacity: " +
    initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
    initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
    throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
    this.loadFactor = loadFactor;
    //下面介绍一下这行代码的作用
    this.threshold = tableSizeFor(initialCapacity);
    }

    public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

    public HashMap(Map<? extends K, ? extends V> m) {
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    putMapEntries(m, false);
    }

    HashMap有4个构造函数.

    重点介绍下tableSizeFor(initialCapacity)方法,该方法作用,将你传入的initialCapacity进行计算,返回一个大于等于initialCapacity最小的2的幂次方,比如输入6,结算结果为8,源码如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    static final int tableSizeFor(int cap) {                                                                      
    int n = cap - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
  • 插入源码

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
    boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    //当table为空时,这里初始化table,不是通过构造函数初始化,而是在插入时通过扩容初始化,有效防止了初始化HashMap没有数据插入造成空间浪费可能造成内存泄露的情况
    if ((tab = table) == null || (n = tab.length) == 0)
    n = (tab = resize()).length;
    //存放新键值对
    if ((p = tab[i = (n - 1) & hash]) == null)
    tab[i] = newNode(hash, key, value, null);
    else {
    Node<K,V> e; K k;
    //旧键值对的覆盖
    if (p.hash == hash &&
    ((k = p.key) == key || (key != null && key.equals(k))))
    e = p;
    //在红黑树中查找旧键值对更新
    else if (p instanceof TreeNode)
    e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
    else {
    //将新键值对放在链表的最后
    for (int binCount = 0; ; ++binCount) {
    if ((e = p.next) == null) {
    p.next = newNode(hash, key, value, null);
    //当链表的长度大于等于树化阀值,并且hash桶的长度大于等于MIN_TREEIFY_CAPACITY,链表转化为红黑树
    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
    treeifyBin(tab, hash);
    break;
    }
    //链表中包含键值对
    if (e.hash == hash &&
    ((k = e.key) == key || (key != null && key.equals(k))))
    break;
    p = e;
    }
    }
    //map中含有旧key,返回旧值
    if (e != null) {
    V oldValue = e.value;
    if (!onlyIfAbsent || oldValue == null)
    e.value = value;
    afterNodeAccess(e);
    return oldValue;
    }
    }
    //map调整次数加1
    ++modCount;
    //键值对的数量达到阈值需要扩容
    if (++size > threshold)
    resize();
    afterNodeInsertion(evict);
    return null;
    }

    上述代码总结如下:

    1. 首次插入进行hash表的初始化操作,扩容初始化,插入键值对
    2. 插入的键值对中key已经存在,更新键值对
    3. 插入链表,如果链表长度大于MIN_TREEIFY_CAPACITY(默认值为8),转化为红黑树,否则直接插入
    4. 检查是否需要扩容,当键值对的个数大于threshold阈值进行扩容操作,其中threshold=size*loadFactor
  • 扩容

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    //如果旧hash桶不为空
    if (oldCap > 0) {
    //超过hash桶的最大长度,将阀值设为最大值
    if (oldCap >= MAXIMUM_CAPACITY) {
    threshold = Integer.MAX_VALUE;
    return oldTab;
    }
    //新的hash桶的长度2被扩容没有超过最大长度,将新容量阀值扩容为以前的2倍
    else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
    oldCap >= DEFAULT_INITIAL_CAPACITY)
    newThr = oldThr << 1; // double threshold
    }
    //如果hash表阈值已经初始化过
    else if (oldThr > 0) // initial capacity was placed in threshold
    newCap = oldThr;
    //如果旧hash桶,并且hash桶容量阈值没有初始化,那么需要初始化新的hash桶的容量和新容量阀值
    else {
    newCap = DEFAULT_INITIAL_CAPACITY;
    newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    //新的局部变量阀值赋值
    if (newThr == 0) {
    float ft = (float)newCap * loadFactor;
    newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
    (int)ft : Integer.MAX_VALUE);
    }
    //为当前容量阀值赋值
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
    //初始化hash桶
    Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    //如果旧的hash桶不为空,需要将旧的hash表里的键值对重新映射到新的hash桶中
    if (oldTab != null) {
    for (int j = 0; j < oldCap; ++j) {
    Node<K,V> e;
    if ((e = oldTab[j]) != null) {
    oldTab[j] = null;
    //只有一个节点,通过索引位置直接映射
    if (e.next == null)
    newTab[e.hash & (newCap - 1)] = e;
    //如果是红黑树,需要进行树拆分然后映射
    else if (e instanceof TreeNode)
    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
    else {
    //如果是多个节点的链表,将原链表拆分为两个链表,两个链表的索引位置,一个为原索引,一个为原索引加上旧Hash桶长度的偏移量
    Node<K,V> loHead = null, loTail = null;
    Node<K,V> hiHead = null, hiTail = null;
    Node<K,V> next;
    do {
    next = e.next;
    //链表1
    if ((e.hash & oldCap) == 0) {
    if (loTail == null)
    loHead = e;
    else
    loTail.next = e;
    loTail = e;
    }
    //链表2
    else {
    if (hiTail == null)
    hiHead = e;
    else
    hiTail.next = e;
    hiTail = e;
    }
    } while ((e = next) != null);
    //链表1存于原索引
    if (loTail != null) {
    loTail.next = null;
    newTab[j] = loHead;
    }
    //链表2存于原索引加上原hash桶长度的偏移量
    if (hiTail != null) {
    hiTail.next = null;
    newTab[j + oldCap] = hiHead;
    }
    }
    }
    }
    }
    return newTab;
    }

    如下情况会产生扩容操作:

    1. 初始化HashMap,第一次进行put操作
    2. 当键值对的个数大于threshold阀值时产生扩容,threshold=size*loadFactor

    源码中关于红黑树的操作、旋转、着色,这里不做介绍,有兴趣可以另行查看

总结

  1. HashMap允许NULL值,NULL
  2. 不要轻易改变负载因子,负载因子过高会导致链表过长,查找键值对时间复杂度就会增高,负载因子过低会导致hash桶的数量过多,空间复杂度会增高
  3. Hash表每次会扩容长度为以前的2倍
  4. HashMap是多线程不安全的,我在JDK 1.7进行多线程put操作,之后遍历,直接死循环,CPU飙到100%,在JDK 1.8
    进行多线程操作会出现节点和value值丢失,为什么JDK1.7JDK1.8多线程操作会出现很大不同,是因为JDK 1.8的作者对resize
    方法进行了优化不会产生链表闭环。这也是本章的重点之一,具体的细节大家可以去查阅资料。这里就不解释太多了
  5. 尽量设置HashMap的初始容量,尤其在数据量大的时候,防止多次resize
  6. HashMapJDK 1.8在做了很好性能的提升,我看到过在JDK1.7JDK1.8 get操作性能对比JDK1.8是要优于JDK 1.7的,大家感兴趣的可以自己做个测试。
分享到